期刊论文详细信息
PSYCHONEUROENDOCRINOLOGY 卷:97
Disruption of microglia histone acetylation and protein pathways in mice exhibiting inflammation-associated depression-like symptoms
Article
Rodriguez-Zas, Sandra L.1,2  Wu, Cong3,4  Southey, Bruce R.1  O'Connor, Jason C.5,6  Nixon, Scott E.1  Garcia, Robmay1  Zavala, Cynthia1  Lawson, Marcus1  McCusker, Robert H.1  Romanova, Elena, V4,7  Sweedler, Jonathan, V4,7  Kelley, Keith W.1  Dantzer, Robert8 
[1] Univ Illinois, Dept Anim Sci, Urbana, IL USA
[2] Univ Illinois, Dept Stat, Urbana, IL USA
[3] Univ Illinois, Dept Biochem, Urbana, IL USA
[4] Univ Illinois, Beckman Inst, Urbana, IL USA
[5] Univ Texas Hlth San Antonio, Dept Pharmacol, San Antonio, TX USA
[6] South Texas Vet Hlth Syst, Audie L Murphy VA Hosp, San Antonio, TX USA
[7] Univ Illinois, Dept Chem, Urbana, IL USA
[8] Univ Texas MD Anderson Canc Ctr, Dept Symptom Res, Houston, TX 77030 USA
关键词: Indoleamine-pyrrole 2;    3 Dioxygenase;    Bacille Calmette Guerin;    Epigenetics;    Mass spectrometry;    Phagosome;    14-3-3 Proteins;   
DOI  :  10.1016/j.psyneuen.2018.06.024
来源: Elsevier
PDF
【 摘 要 】

Background: Peripheral immune challenge can elicit microglia activation and depression-related symptoms. The balance of inflammatory signals in the tryptophan pathway can skew the activity of indoleamine-pyrrole 2,3 dioxygenase (IDO1) towards the metabolization of tryptophan into kynurenine (rather than serotonin), and towards neuroprotective or neurotoxic metabolites. The proteome changes that accompany inflammation-associated depression-related behaviors are incompletely understood. Methods: The changes in microglia protein abundance and post-translational modifications in wild type (WT) mice that exhibit depression-like symptoms after recovery from peripheral Bacille Calmette-Guerin (BCG) challenge were studied. This WT_BGG group was compared to mice that do not express depression-like symptoms after BCG challenge due to IDO1 deficiency by means of genetic knockout (BCG_KO group), and to WT Saline-treated (Sal) mice (WT_Sal group) using a mass spectrometry-based label-free approach. Results: The comparison of WT_BCG relative to WT_Sal and KO_BCG mice uncovered patterns of protein abundance and acetylation among the histone families that could influence microglia signaling and transcriptional rates. Members of the histone clusters 1, 2 and 3 families were less abundant in WT_BCG relative to WT_Sal whereas members in the H2A family exhibited the opposite pattern. Irrespective of family, the majority of the histones were less abundant in WT_BCG relative to KO_BCG microglia. Homeostatic mechanisms may temper the potentially toxic effects of high histone levels after BCG challenge to levels lower than Sal. Histone acetylation was highest in WT_BCG and the similar levels observed in WT_Sal and KO_BCG. This result suggest that histone acetylation levels are similar between IDO1 deficient mice after immune challenge and unchallenged WT mice. The over-abundance of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation proteins (14-3-3 series) in WT_BCG relative to KO_BCG is particularly interesting because these proteins activate another rate-limiting enzyme in the tryptophan pathway. The over-representation of alcoholism and systemic lupus erythematosus pathways among the proteins exhibiting differential abundance between the groups suggest that these disorders share microglia activation pathways with BCG challenge. The over-representation of phagosome pathway among proteins differentially abundant between WT_BCG and KO_BCG microglia suggest an association between IDO1 deficiency and phagocytosis. Likewise, the over-representation of the gap junction pathway among the differentially abundant proteins between KO_BCG and WT_Sal suggest a multifactorial effect of BCG and IDO1 deficiency on cell communication. Conclusions: The present study of histone acetylation and differential protein abundance furthers the understanding of the long lasting effects of peripheral immune challenges. Our findings offer insights into target proteins and mechanisms that provide clues for therapies to ameliorate inflammation-associated depression-related behaviors.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_psyneuen_2018_06_024.pdf 511KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次