期刊论文详细信息
PATTERN RECOGNITION 卷:46
Classification of hyperspectral images by tensor modeling and additive morphological decomposition
Article
Velasco-Forero, Santiago1  Angulo, Jesus1,2 
[1] MINES Paristech, CMM, Ctr Morphol Math Math & Syst, Paris, France
[2] MINES Paristech, Ctr Math Morphol, Dept Math & Syst, Paris, France
关键词: Hyperspectral images;    Mathematical morphology;    Pixelwise classification;    Tensor modeling;   
DOI  :  10.1016/j.patcog.2012.08.011
来源: Elsevier
PDF
【 摘 要 】

Pixel-wise classification in high-dimensional multivariate images is investigated. The proposed method deals with the joint use of spectral and spatial information provided in hyperspectral images. Additive morphological decomposition (AMD) based on morphological operators is proposed. AMD defines a scale-space decomposition for multivariate images without any loss of information. AMD is modeled as a tensor structure and tensor principal components analysis is compared as dimensional reduction algorithm versus classic approach. Experimental comparison shows that the proposed algorithm can provide better performance for the pixel classification of hyperspectral image than many other well-known techniques. (c) 2012 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_patcog_2012_08_011.pdf 2388KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次