期刊论文详细信息
PATTERN RECOGNITION 卷:74
Simultaneous segmentation and bias field estimation using local fitted images
Article
Wang, Lei1,2  Zhu, Jianbing3,4  Sheng, Mao5  Cribb, Adriena1,2  Zhu, Shaocheng6  Pu, Jiantao1,2 
[1] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15260 USA
[3] Nanjing Med Univ, Suzhou Hosp, Suzhou 215153, Peoples R China
[4] Suzhou Sci & Technol Town Hosp, Suzhou 215153, Peoples R China
[5] Soochow Univ, Childrens Hosp, Dept Radiol, Suzhou 215003, Peoples R China
[6] Henan Prov Peoples Hosp, Dept Radiol, Zhengzhou 450003, Henan, Peoples R China
关键词: Level set;    Image segmentation;    Local fitted images;    Intensity inhomogeneity;    Bias field;   
DOI  :  10.1016/j.patcog.2017.08.031
来源: Elsevier
PDF
【 摘 要 】

Level set methods often suffer from boundary leakage and inadequate segmentation when used to segment images with inhomogeneous intensities. To handle this issue, a novel region-based level set method was developed, in which two different local fitted images are used to construct a hybrid region intensity fitting energy functional. This novel method enables simultaneous segmentation of the regions of interest and estimation of the bias fields from inhomogeneous images. Our experiments on both synthetic images and a publicly available dataset demonstrate the feasibility and reliability of the proposed method. (C) 2017 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_patcog_2017_08_031.pdf 2044KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:2次