期刊论文详细信息
PATTERN RECOGNITION 卷:46
A new topological clustering algorithm for interval data
Article
Cabanes, Guenael1  Bennani, Younes1  Destenay, Renaud2,3  Hardy, Andre2,3 
[1] Univ Paris 13, CNRS, UMR 7030, LIPN, F-93430 Villetaneuse, France
[2] Univ Namur FUNDP, Namur Ctr Complex Syst naXys, B-5000 Namur, Belgium
[3] Univ Namur FUNDP, Dept Math, B-5000 Namur, Belgium
关键词: Interval data;    Clustering;    Self-organizing map;   
DOI  :  10.1016/j.patcog.2013.03.023
来源: Elsevier
PDF
【 摘 要 】

Clustering is a very powerful tool for automatic detection of relevant sub-groups in unlabeled data sets. In this paper we focus on interval data: i.e., where the objects are defined as hyper-rectangles. We propose here a new clustering algorithm for interval data, based on the learning of a Self-Organizing Map. The major advantage of our approach is that the number of clusters to find is determined automatically; no a priori hypothesis for the number of clusters is required. Experimental results confirm the effectiveness of the proposed algorithm when applied to interval data. (C) 2013 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_patcog_2013_03_023.pdf 454KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次