期刊论文详细信息
PATTERN RECOGNITION 卷:47
Detecting pedestrians on a Movement Feature Space
Article
Negri, Pablo1,3  Goussies, Norberto1,4  Lotito, Pablo1,2,5 
[1] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, PLADEMA, RA-1033 Buenos Aires, DF, Argentina
[3] UADE, Inst Tecnol, Buenos Aires, DF, Argentina
[4] DC UBA, Buenos Aires, DF, Argentina
[5] PLADEMA UNCPBA, Tandil, Argentina
关键词: Pedestrian detection;    Movement Feature Space;    Histograms of oriented level lines;    Adaboost cascade;    Linear SVM;   
DOI  :  10.1016/j.patcog.2013.05.020
来源: Elsevier
PDF
【 摘 要 】

This work aims at detecting pedestrians in surveillance video sequences. A pre-processing step detects motion regions on the image using a scene background model based on level lines, which generates a Movement Feature Space, and a family of oriented histogram descriptors. A cascade of boosted classifiers generates pedestrian hypotheses using this feature space. Then, a linear Support Vector Machine validates the hypotheses that are likeliest to contain a person. The combination of the three detection phases reduces false positives, preserving the majority of pedestrians. The system tests conducted in our dataset, which contain low-resolution pedestrians, achieved a maximum performance of 25.5% miss rate with a rate of 10(-1) false positives per image. This value is comparable to the best detection values for this kind of images. In addition, the processing time is between 2 and 6 fps on 640 x 480 pixel captures. This is therefore a fast and reliable pedestrian detector. (C) 2013 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_patcog_2013_05_020.pdf 8423KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次