期刊论文详细信息
FUEL 卷:307
Effects of ammonia and hydrogen on the sooting characteristics of laminar coflow flames of ethylene and methane
Article
Steinmetz, S. A.1  Ahmed, H. A.1,2  Boyette, W. R.3  Dunn, M. J.1  Roberts, W. L.3  Masri, A. R.1 
[1] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[2] Zagazig Univ, Mech Engn Dept, Zagazig 44519, Sharkia, Egypt
[3] King Abdullah Univ Sci & Technol KAUST, CCRC, Thuwal 239556900, Saudi Arabia
关键词: Soot;    Soot precursors;    Hydrogen;    Ammonia;    Dilution;   
DOI  :  10.1016/j.fuel.2021.121914
来源: Elsevier
PDF
【 摘 要 】

Hydrogen and its derivatives, including ammonia, are gaining increasing attention as carbon-neutral fuel alternatives. An intermediate step in the transition to hydrogen and ammonia is the blending of these fuels with hydrocarbons, introducing the challenge of soot formation. The impact of ammonia on soot formation has recently been the focus of several studies, but a complete understanding of its chemical effects is lacking. Hydrogen, by comparison, has received significant attention from the soot community. However, controversy remains with regards to hydrogen's chemical impact, and the dependence of this impact on fuel and flame configuration. This work investigates the effect of both hydrogen and ammonia on soot formation in laminar coflow flames of both ethylene and methane. Hydrogen or ammonia are introduced either by addition or substitution, with parallel studies of helium and argon, in order to isolate their chemical effects. Time- and spectrally-resolved laser-induced emissions from UV and IR excitation are used to quantify differences in soot and soot precursor formation. Additionally, chemical kinetics calculations and analyses are used to elucidate the effects of ammonia introduction to ethylene flames. Ammonia is found to chemically inhibit soot when mixed with either ethylene or methane, with increasing effects on larger precursors. Calculations suggest that this suppression is due to carbon consumption in the formation of HCN and CN. Hydrogen is found to chemically enhance soot formation in both ethylene and methane flames.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_fuel_2021_121914.pdf 6568KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次