期刊论文详细信息
FUEL 卷:106
Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts
Article
Wu, Chunfei1  Wang, Zichun2  Huang, Jun2  Williams, Paul T.1 
[1] Univ Leeds, Energy Res Inst, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Sydney, Lab Catalysis Engn, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
关键词: Biomass;    Cellulose;    Hemicellulose;    Lignin;    Gasification;   
DOI  :  10.1016/j.fuel.2012.10.064
来源: Elsevier
PDF
【 摘 要 】

Cellulose, hemicellulose and lignin are the main components of biomass. This work presents research into the pyrolysis/gasification of all three main components of biomass, in order to evaluate and compare their hydrogen production and also understand their gasification processes. A fixed bed, two-stage reaction system has been used employing various nickel-based catalysts. Gas concentration (CO, H-2, CO, CO2 and CH4) was analysed for the produced non-condensed gases. Oil byproducts were analysed by gas chromatography/mass spectrometry (GC/MS). Various techniques such as X-Ray Diffraction (XRD), scanning electron microscopy (SEM) coupled to an energy dispersive X-ray spectroscopy (EDXS), temperature-programmed oxidation (TPO) were applied to characterize the fresh or reacted catalysts. The experimental results show that the lignin sample generates the highest residue fraction (52.0 wt.%) among the three biomass components. When Ni-Zn-Al (1:1) catalyst was used in the gasification process, gas yield was increased from 62.4 to 68.2 wt.% for cellulose, and from 25.2 to 50.0 wt.% for the pyrolysis/gasification of lignin. Hydrogen production was increased from 7.0 to 18.7 (m mol g(-1) sample) when the Ni-Zn-Al (1:1) catalyst was introduced in the pyrolysis/gasification of cellulose. Among the investigated catalysts, Ni-Ca-Al (1:1) was found to be the most effective for hydrogen production from cellulose pyrolysis/gasification. (c) 2012 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_fuel_2012_10_064.pdf 939KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:1次