期刊论文详细信息
FUEL 卷:126
Low temperature oxidation of n-hexane in a flow reactor
Article
Mevel, R.1  Chatelain, K.1  Boettcher, P. A.1  Dayma, G.2  Shepherd, J. E.1 
[1] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA
[2] CNRS, ICARE, F-45071 Orleans, France
关键词: Flow reactor;    Low temperature oxidation;    Hexane;    Laser-based diagnostics;   
DOI  :  10.1016/j.fuel.2014.02.072
来源: Elsevier
PDF
【 摘 要 】

The risk of igniting a flammable mixture in fuel tank vapor space is a major concern in aviation safety. In order to analyze the hazards and develop mitigation strategies, it is necessary to characterize the explosive properties of kerosene vapor-air mixtures over wide ranges of initial conditions. n-Hexane has been extensively used in our laboratory as a single component surrogate of kerosene. In the present study, hexane oxidation by oxygen was studied in a flow reactor at equivalence ratios of 0.7, 1 and 1.5 for mixtures diluted at 90% with nitrogen. Residence time was set at 2 s and the pressure at 100 kPa. The evolution of the gas phase composition at the reactor exit was studied over the range 450-1000 K. Laser-based diagnostics and gas chromatography analysis were used to characterize the exit mixture composition. The chemical species measurements revealed three distinct regimes of oxidation, namely (i) the cool flame region from 600 to 650 K, (ii) the NTC region between 675 and 775 K, and (iii) the high temperature oxidation regime from 800 K. The modeling study demonstrated the capability of reproducing most of the trends observed experimentally. (C) 2014 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_fuel_2014_02_072.pdf 3844KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:3次