期刊论文详细信息
FUEL 卷:127
CO2-gasification of a lignite coal in the presence of an iron-based oxygen carrier for chemical-looping combustion
Article
Saucedo, Marco A.1  Lim, Jin Yang1  Dennis, John S.1  Scott, Stuart A.2 
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 3RA, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词: Chemical looping combustion;    Iron oxide;    Gasification;    Coal;    CO2 capture;   
DOI  :  10.1016/j.fuel.2013.07.045
来源: Elsevier
PDF
【 摘 要 】

Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i. e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. (C) 2013 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_fuel_2013_07_045.pdf 1860KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次