期刊论文详细信息
FOREST ECOLOGY AND MANAGEMENT 卷:459
Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest
Article
Tinya, Flora1  Kovacs, Bence1,2  Aszalos, Reka1  Toth, Bence3  Csepanyi, Peter4  Nemeth, Csaba2  Odor, Peter1,2 
[1] Inst Ecol & Bot, Ctr Ecol Res, Alkotmany U 2-4, H-2163 Vacratot, Hungary
[2] GINOP Sustainable Ecosyst Res Grp, Ctr Ecol Res, Klebelsberg K U 3, H-8237 Tihany, Hungary
[3] Eotvos Lorand Univ, Fac Sci, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
[4] Pilis Pk Forestry Co, Matyas K U 6, H-2025 Visegrad, Hungary
关键词: Clear-cut;    Continuous cover forestry;    Forestry experiment;    Regeneration;    Retention;    Temperate forest;   
DOI  :  10.1016/j.foreco.2019.117810
来源: Elsevier
PDF
【 摘 要 】

Ecological, economic, and social demands triggered a shift in the management of temperate deciduous forests from rotation forestry system towards more nature-based forest management techniques such as continuous cover forestry. However, there is insufficient knowledge on the regeneration success of different tree species-especially oaks-within this management system. Through a systematic experiment, we compared the regeneration processes of a sessile oak-hornbeam forest after gap-cutting (as an element of continuous cover forestry system) to regeneration after clear-cutting, preparation cutting, and in retention tree groups (treatments of rotation forestry system). A managed, closed, mature forest was used as control. Several different aspects of the regeneration were studied: (1) seed supply of sessile oak-Quercus petraea (Matt.) Liebl., (2) species number and abundance of the natural regeneration, (3) survival and growth of individual saplings of five tree species (sessile and Turkey oak-Quercus cerris L., hornbeam-Ccupinus betulus L., beech-Fagus sylvatica L., and common ash-Frazinus excelsior L.). The number of acorns was high in closed forest, intermediate in preparation cutting and retention tree group, low in gaps, and zero in clear-cutting. Four years after the interventions, there was no detectable treatment effect on the species number of regeneration. Survival increased in every treatment compared to control, but there was no significant difference in this measure between the differently treated sites. Height growth was highest in the gaps and clear-cuts, intermediate in preparation cuts, and lowest in retention tree groups and controls. Species with different seed dispersal mechanisms responded differently to treatments: oaks were dispersal-limited in the gaps and clear-cuts, while anemochorous species (e.g., hornbeam and manna ash) were present in every treatment. The survival and growth pattern of the particular species proved to be similar, but the intensity of the response differed: shade-tolerants (hornbeam, beech, and ash) showed better survival than oaks in most treatments, and their height growth was larger. According to our results, oak regeneration establishes successfully in oak-hornbeam forests not only in the case of rotation forestry, but also during continuous cover forestry (gap-cutting). The survival and growth of the saplings are similar in cutting areas and gaps, but keeping in mind other considerations (such as preserving forest continuity, balanced site conditions, and forest biodiversity), continuous cover forestry should be preferred.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_foreco_2019_117810.pdf 1559KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次