FOREST ECOLOGY AND MANAGEMENT | 卷:396 |
Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate | |
Article | |
Forrester, David I.1,2  Tachauer, I. H. H.3  Annighoefer, Peter4  Barbeito, Ignacio5  Pretzsch, Hans3  Ruiz-Peinado, Ricardo6,7,8  Stark, Hendrik2  Vacchiano, Giorgio9  Zlatanov, Tzvetan10  Chakraborty, Tamalika11  Saha, Somidh2,12  Sileshi, Gudeta W.13  | |
[1] Swiss Fed Inst Forest, Snow & Landscape Res WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland | |
[2] Albert Ludwigs Univ Freiburg, Chair Silviculture, Freiburg, Germany | |
[3] Tech Univ Munich, Chair Forest Growth & Yield Sci, Munich, Germany | |
[4] Georg August Univ Gottingen, Abt Waldbau & Waldokol Gemassigten Zonen, Gottingen, Germany | |
[5] AgroParisTech, LERFoB, INRA, F-54000 Nancy, France | |
[6] INIA, Dept Silviculture & Forest Syst Management, CIFOR Forest Res Ctr, Madrid, Spain | |
[7] Univ Valladolid, Sustainable Forest Management Res Inst IuFOR, Valladolid, Spain | |
[8] INIA, Madrid, Spain | |
[9] European Commiss, Joint Res Ctr, Directorate D, Sustainable Resources Bioecon Unit, Ispra, Italy | |
[10] Forest Res Inst, Dept Silviculture, Sofia, Bulgaria | |
[11] Albert Ludwigs Univ Freiburg, Chair Site Classificat & Vegetat Sci, Freiburg, Germany | |
[12] Karlsruhe Inst Technol, Inst Technol Assessment & Syst Anal, Karlsruhe, Germany | |
[13] Plot 1244 Ibex Hill, Lusaka, Zambia | |
关键词: Allometry; Forest growth; Pseudo-observations; Shade tolerance; Specific leaf area; Wood density; | |
DOI : 10.1016/j.foreco.2017.04.011 | |
来源: Elsevier | |
【 摘 要 】
Biomass and leaf area equations are often required to assess or model forest productivity, carbon stocks and other ecosystem services. These factors are influenced by climate, age and stand structural attributes including stand density and tree species diversity or species composition. However, such covariates are rarely included in biomass and leaf area equations. We reviewed the literature and built a database of biomass and leaf area equations for 24 European tree species and 3 introduced species. The final dataset contained 973 equations. Most of the equations were site-specific and therefore restricted to the edaphic, climatic and stand structural conditions of the given site. To overcome this limitation, the database was used to develop regional species-specific equations that can be used in a wide range of stands and to quantify the effects of climate, age and stand structure on biomass or leaf area. The analysis showed considerable inter- and intra-specific variability in biomass relationships. The intra-specific variability was related to climate, age or stand characteristics, while the inter-specific variability was correlated with traits such as wood density, specific leaf area and shade tolerance. The analysis also showed that foliage mass is more variable than stem or total aboveground biomass, both within and between species, and these biomass components have contrasting responses to age and changes in stand structure. Despite the large number of published equations, many species are still not well represented. Therefore, generic equations were developed that include species-specific wood density instead of species identity. Further improvements may be possible if future studies quantify the stand structure of individual tree neighbourhoods instead of using the stand means for all trees sampled with the given stand. (C) 2017 The Authors. Published by Elsevier B.V.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_foreco_2017_04_011.pdf | 838KB | download |