期刊论文详细信息
SURFACE & COATINGS TECHNOLOGY 卷:386
Laser glazing of cold sprayed coatings for the mitigation of stress corrosion cracking in light water reactor (LWR) applications
Article
Stutzman, A. M.1  Rai, A. K.2  Alexandreanu, B.3  Albert, P. E.1,4  Sun, E. J.1  Schwartz, M. L.1,4  Reutzel, E. W.1,5  Tressler, J. F.1  Medill, T. P.1  Wolfe, D. E.1,4,5 
[1] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA
[2] UES Inc, 4401 Dayton Xenia Rd, Dayton, OH 45432 USA
[3] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
关键词: Light water reactor (LWR);    Stress corrosion cracking (SCC);    Alloy 600;    Alloy 690;    Cold spray;    Laser glazing;   
DOI  :  10.1016/j.surfcoat.2020.125429
来源: Elsevier
PDF
【 摘 要 】

The effect of laser power, traverse speed, and cold spray coating thickness were examined with the goal of mitigating and repairing stress corrosion cracking (SCC) in light water reactor (LWR) environment. For this purpose, SCC-susceptible Alloy 600 substrate material was coated with SCC-resistant Alloy 690 via the cold spray technique. The cold spray coated substrate was then laser-glazed using various laser parameters. Single pass and multiple pass laser glazed regions were created to determine the effects. For this purpose, the area of the fusion zone, depth of the fusion zone, and elemental composition of the cross section were examined by optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. It was shown that chromium dilution from the laser glazed region into the substrate is not a significant factor in laser glazed cold spray coated samples. Separate laser glazed samples were subjected to ASTM 633C to determine coating adhesion. Finally, by using interrupted SCC crack growth rate tests, it was shown that low traverse speeds and high laser powers produce deep fusion zones within the cold sprayed coating and substrate that can be used to seal pre-existing cracks, thus stopping SCC growth.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_surfcoat_2020_125429.pdf 3549KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次