期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:325
Modulational instability in nonlinear nonlocal equations of regularized long wave type
Article
Hur, Vera Mikyoung1  Pandey, Ashish Kumar1 
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词: Modulational instability;    Nonlinear nonlocal;    Regularized long wave;    BBM;    Boussinesq;    Fractional dispersion;   
DOI  :  10.1016/j.physd.2016.03.005
来源: Elsevier
PDF
【 摘 要 】

We study the stability and instability of periodic traveling waves in the vicinity of the origin in the spectral plane, for equations of Benjamin-Bona-Mahony (BBM) and regularized Boussinesq types permitting nonlocal dispersion. We extend recent results for equations of Korteweg-de Vries type and derive modulational instability indices as functions of the wave number of the underlying wave. We show that a sufficiently small, periodic traveling wave of the BBM equation is spectrally unstable to long wavelength perturbations if the wave number is greater than a critical value and a sufficiently small, periodic traveling wave of the regularized Boussinesq equation is stable to square integrable perturbations. Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2016_03_005.pdf 505KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次