期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:376
Fluids, geometry, and the onset of Navier-Stokes turbulence in three space dimensions
Article
Chen, Gui-Qiang1,2,3  Slemrod, Marshall4  Wang, Dehua5 
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Chinese Acad Sci, AMSS, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, UCAS, Beijing 100190, Peoples R China
[4] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[5] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词: Incompressible Euler equations;    Compressible Euler equations;    Isometric immersion problem;    Riemann curvature tensor;    Navier-Stokes equations;    Turbulence;   
DOI  :  10.1016/j.physd.2017.08.004
来源: Elsevier
PDF
【 摘 要 】

A theory for the evolution of a metric g driven by the equations of three-dimensional continuum mechanics is developed. This metric in turn allows for the local existence of an evolving three-dimensional Riemannian manifold immersed in the six-dimensional Euclidean space. The Nash-Kuiper theorem is then applied to this Riemannian manifold to produce a wild evolving C-1 manifold. The theory is applied to the incompressible Euler and Navier-Stokes equations. One practical outcome of the theory is a computation of critical profile initial data for what may be interpreted as the onset of turbulence for the classical incompressible Navier-Stokes equations. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2017_08_004.pdf 670KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次