期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:260
Equilibria of biological aggregations with nonlocal repulsive-attractive interactions
Article
Fetecau, R. C.1  Huang, Y.1 
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
关键词: Swarm equilibria;    Biological aggregations;    Newtonian potential;    Global attractors;   
DOI  :  10.1016/j.physd.2012.11.004
来源: Elsevier
PDF
【 摘 要 】

We consider the aggregation equation rho(t) - del . (rho del K (*) rho) = 0 in R-n, where the interaction potential K incorporates short-range Newtonian repulsion and long-range power-law attraction. We study the global well-posedness of solutions and investigate analytically and numerically the equilibrium solutions. We show that there exist unique equilibria supported on a ball of R-n. By using the method of moving planes we prove that such equilibria are radially symmetric and monotone in the radial coordinate. We perform asymptotic studies for the limiting cases when the exponent of the power-law attraction approaches infinity and a Newtonian singularity, respectively. Numerical simulations suggest that equilibria studied here are global attractors for the dynamics of the aggregation model. (c) 2012 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2012_11_004.pdf 432KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次