期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:411
Effective wave factorization for a stochastic Schrodinger equation
Article
Zhang, Ao1,2  Duan, Jinqiao3 
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Peoples R China
[3] IIT, Dept Appl Math, Chicago, IL 60616 USA
关键词: Homogenization;    Stochastic Schrodinger equation;    Multiplicative noise;    Two-scale convergence;    Bloch wave;    Variational solution;   
DOI  :  10.1016/j.physd.2020.132573
来源: Elsevier
PDF
【 摘 要 】

We study the homogenization of a stochastic Schrodinger equation with a large periodic potential in solid state physics. Denoting by epsilon the period, the potential is scaled as epsilon(-2). Under a generic assumption on the spectral properties of the associated cell problem, we prove that the solution can be approximately factorized as the product of a fast oscillating cell eigenfunction and of a slowly varying solution of an effective equation. Our method is based on two-scale convergence and Bloch waves theory. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2020_132573.pdf 438KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次