期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:406
Singular perturbation of an elastic energy with a singular weight
Article
Misiats, Oleksandr1  Topaloglu, Ihsan1  Vasiliu, Daniel2 
[1] Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
关键词: Solid-to-solid phase transitions;    Elastic energy;    Singular perturbation;    Microstructure;    Young measure;    Scaling law;   
DOI  :  10.1016/j.physd.2020.132422
来源: Elsevier
PDF
【 摘 要 】

We study the singular perturbation of an elastic energy with a singular weight. The minimization of this energy results in a multi-scale pattern formation. We derive an energy scaling law in terms of the perturbation parameter and prove that, although one cannot expect periodicity of minimizers, the energy of a minimizer is uniformly distributed across the sample. Finally, following the approach developed by Alberti and Muller (2001) we prove that a sequence of minimizers of the perturbed energies converges to a Young measure supported on piecewise-linear periodic functions of slope +/- 1 whose period depends on the location in the domain and the weights in the energy. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2020_132422.pdf 467KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次