PHYSICA D-NONLINEAR PHENOMENA | 卷:285 |
Analysis of a temperature-dependent model for adhesive contact with friction | |
Article | |
Bonetti, Elena1  Bonfanti, Giovanna2  Rossi, Riccarda2  | |
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy | |
[2] Univ Brescia, Sez Matemat, DICATAM, I-25133 Brescia, Italy | |
关键词: Contact; Adhesion; Friction; Thermoviscoelasticity; Entropy balance; | |
DOI : 10.1016/j.physd.2014.06.008 | |
来源: Elsevier | |
【 摘 要 】
We propose a model for (unilateral) contact with adhesion between a viscoelastic body and a rigid support, encompassing thermal and frictional effects. Following FREMOND'S approach, adhesion is described in terms of a surface damage parameter chi. The related equations are the (quasistatic) momentum balance for the vector of displacements, and parabolic-type evolution equations for chi, and for the absolute temperatures of the body and of the adhesive substance on the contact surface. All of the constraints on the internal variables, as well as the contact and the friction conditions, are rendered by means of subdifferential operators. Furthermore, the temperature equations, derived from an entropy balance law, feature singular functions. Therefore, the resulting PDE system has a highly nonlinear character. After introducing a suitable regularization of the Coulomb law for dry friction, we address the analysis of the resulting PDE system. The main result of the paper states the existence of global-in-time solutions to the associated Cauchy problem. It is proved by passing to the limit in a carefully tailored approximate problem, via variational techniques. (C) 2014 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_physd_2014_06_008.pdf | 583KB | download |