期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA | 卷:248 |
so(p, q) Toda systems | |
Article | |
Charalambides, Stelios A.1  Damianou, Pantelis A.1  | |
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus | |
关键词: Toda lattice; Integrable systems; Poisson brackets; Lie algebra; Hamiltonian systems; | |
DOI : 10.1016/j.physd.2013.01.001 | |
来源: Elsevier | |
【 摘 要 】
We define an integrable Hamiltonian system of Toda type associated with the real Lie algebra so(p, q). As usual there exist a periodic and a non-periodic version. We construct, using the root space, two Lax pair representations and the associated Poisson tensors. We prove Liouville integrability and examine the multi-Hamiltonian structure. The system is a projection of a canonical A(n) type Toda lattice via a Flaschka transformation. It is also obtained via a complex change of variables from the classical Toda lattice. (C) 2013 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_physd_2013_01_001.pdf | 280KB | download |