期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:248
so(p, q) Toda systems
Article
Charalambides, Stelios A.1  Damianou, Pantelis A.1 
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词: Toda lattice;    Integrable systems;    Poisson brackets;    Lie algebra;    Hamiltonian systems;   
DOI  :  10.1016/j.physd.2013.01.001
来源: Elsevier
PDF
【 摘 要 】

We define an integrable Hamiltonian system of Toda type associated with the real Lie algebra so(p, q). As usual there exist a periodic and a non-periodic version. We construct, using the root space, two Lax pair representations and the associated Poisson tensors. We prove Liouville integrability and examine the multi-Hamiltonian structure. The system is a projection of a canonical A(n) type Toda lattice via a Flaschka transformation. It is also obtained via a complex change of variables from the classical Toda lattice. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2013_01_001.pdf 280KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次