期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:304
Synchronization of coupled chaotic maps
Article
Medvedev, Georgi S.1  Tang, Xuezhi1 
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
关键词: Synchronization;    Chaos;    Cayley graph;    Quasirandom graph;    Power-law graph;    Expander;   
DOI  :  10.1016/j.physd.2015.05.002
来源: Elsevier
PDF
【 摘 要 】

We prove a sufficient condition for synchronization for coupled one-dimensional maps and estimate the size of the window of parameters where synchronization takes place. It is shown that coupled systems on graphs with positive eigenvalues of the normalized graph Laplacian concentrated around 1 are more amenable for synchronization. In the light of this condition, we review spectral properties of Cayley, quasirandom, power-law graphs, and expanders and relate them to synchronization of the corresponding networks. The analysis of synchronization on these graphs is illustrated with numerical experiments. The results of this paper highlight the advantages of random connectivity for synchronization of coupled chaotic dynamical systems. (C) 2015 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2015_05_002.pdf 4058KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次