期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:292
Premixed-flame shapes and polynomials
Article
Denet, Bruno1  Joulin, Guy2 
[1] Aix Marseille Univ, CNRS, IRPHE, Cent Marseill,UMR 7342,Technopole Chateau Gombert, F-13384 Marseille 13, France
[2] Univ Poitiers, CNRS, ENSMA, Inst Prime P,UPR 3346, F-86961 Poitiers, France
关键词: Flame shapes;    Nonlinear nonlocal equation;    Poles;    Polynomials;    Recurrence;   
DOI  :  10.1016/j.physd.2014.10.007
来源: Elsevier
PDF
【 摘 要 】

The nonlinear nonlocal Michelson-Sivashinsky equation for isolated crests of unstable flames is studied, using pole-decompositions as starting point. Polynomials encoding the numerically computed 2N flame-slope poles, and auxiliary ones, are found to closely follow a Meixner-Pollaczek recurrence; accurate steady crest shapes ensue for N >= 3. Squeezed crests ruled by a discretized Burgers equation involve the same polynomials. Such explicit approximate shapes still lack for finite-N pole-decomposed periodic flames, despite another empirical recurrence. (C) 2014 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2014_10_007.pdf 418KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次