期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:396
Blow-up dynamics in the mass super-critical NLS equations
Article
Yang, Kai1  Roudenko, Svetlana1  Zhao, Yanxiang2 
[1] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
[2] George Washington Univ, Dept Math, Washington, DC 20052 USA
关键词: NLS equation;    Blow-up dynamics;    Super-critical collapse;    Dynamic rescaling method;    Multi-bump profiles;   
DOI  :  10.1016/j.physd.2019.02.015
来源: Elsevier
PDF
【 摘 要 】

We study stable blow-up dynamics in the L-2-supercritical nonlinear Schrodinger equation with radial symmetry in various dimensions. We first investigate the profile equation and extend the result of Wang (1990) and Budd et al. (1999) on the existence and local uniqueness of solutions of the cubic profile equation to other L-2-supercritical nonlinearities and dimensions d >= 2. We then numerically observe the multi-bump structure of such solutions, and in particular, exhibit the Q(1.0 )solution, a candidate for the stable blow-up profile. Next, using the dynamic rescaling method, we investigate stable blow-up solutions in the L-2-supercritical NLS and confirm the square root rate of the blow-up as well as the convergence of blow-up profiles to the Q(1.0) profile. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2019_02_015.pdf 7417KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次