期刊论文详细信息
PHYSICA D-NONLINEAR PHENOMENA 卷:339
Global dynamics for steep nonlinearities in two dimensions
Article
Gedeon, Tomas1  Harker, Shaun2  Kokubu, Hiroshi3  Mischaikow, Konstantin2  Oka, Hiroe4 
[1] Montana State Univ, Dept Math Sci, Bozeman, MT 59715 USA
[2] Rutgers State Univ, Dept Math, Hill Ctr, Busch Campus, Piscataway, NJ 08854 USA
[3] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[4] Ryukoku Univ, Dept Appl Math & Informat, Otsu, Shiga 5202194, Japan
关键词: Switching systems;    Perturbation;    Morse graph;    Attractor filtration;    Robustness;   
DOI  :  10.1016/j.physd.2016.08.006
来源: Elsevier
PDF
【 摘 要 】

This paper discusses a novel approach to obtaining mathematically rigorous results on the global dynamics of ordinary differential equations. We study switching models of regulatory networks. To each switching network we associate a Morse graph, a computable object that describes a Morse decomposition of the dynamics. In this paper we show that all smooth perturbations of the switching system share the same Morse graph and we compute explicit bounds on the size of the allowable perturbation. This shows that computationally tractable switching systems can be used to characterize dynamics of smooth systems with steep nonlinearities. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_physd_2016_08_006.pdf 826KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次