期刊论文详细信息
TETRAHEDRON 卷:74
Enhanced process development using automated continuous reactors by self-optimisation algorithms and statistical empirical modelling
Article
Jeraal, Mohammed I.1,2  Holmes, Nicholas1,2  Akien, Geoffrey R.1,2,3  Bourne, Richard A.1,2 
[1] Univ Leeds, Sch Chem, Inst Proc Res & Dev, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Lancaster, Dept Chem, Faraday Bldg, Lancaster LA1 4YB, England
关键词: Self-optimisation;    Design of experiments;    Clasien-schmidt condensation;    Reaction metrics;    Process development;    Flow chemistry;   
DOI  :  10.1016/j.tet.2018.02.061
来源: Elsevier
PDF
【 摘 要 】

Reaction optimisation and understanding is fundamental for process development and is achieved using a variety of techniques. This paper explores the use of self-optimisation and experimental design as a tandem approach to reaction optimisation. A Claisen-Schmidt condensation was optimised using a branch and fit minimising algorithm, with the resulting data being used to fit a response surface model. The model was then applied to find new responses for different metrics, highlighting the most important for process development purposes. (C) 2018 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_tet_2018_02_061.pdf 1352KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次