期刊论文详细信息
TALANTA 卷:181
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm
Article
de Almeida, Valber Elias1  Gomes, Adriano de Araujo2  de Sousa Fernandes, David Douglas1  Casimiro Goicoechea, Hector3  Harrop Galvao, Roberto Kawakami4  Ugulino Araujo, Mario Cesar1 
[1] Univ Fed Paraiba, CCEN, Lab Automacao & Instrumentacao Quim Analit & Quim, Dept Quim, Caixa Postal 5093, BR-58051970 Joao Pessoa, PB, Brazil
[2] Univ Fed Sul & Sudoeste Para, Inst Ciencias Exatas, Fac Quim, Folha 17,Quadra 04, BR-68505080 Maraba, Para, Brazil
[3] Univ Natl Litoral, CONICET, Lab Desarrollo Analit Quimiometr LADAQ, Fac Bioquim & Ciencias Biol,Catedra Quim Analit 1, Ciudad Univ, RA-3000 Santa Fe, Argentina
[4] Inst Tecnol Aeronaut, Div Engn Eletron, BR-12228900 Sao Jose Dos Campos, SP, Brazil
关键词: Nonlinear multivariate calibration;    Kernel partial least squares;    Successive projections algorithm;    Variable selection;    Near infrared spectrometry;    Sugar;   
DOI  :  10.1016/j.talanta.2017.12.064
来源: Elsevier
PDF
【 摘 要 】

This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_talanta_2017_12_064.pdf 975KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次