期刊论文详细信息
SENSORS AND ACTUATORS B-CHEMICAL 卷:256
Robust polarization active nanostructured 1D Bragg Microcavities as optofluidic label-free refractive index sensor
Article
Oliva-Ramirez, M.1,2  Gil-Rostra, J.1  Yubero, F.1  Gonzalez-Elipe, A. R.1 
[1] Univ Seville, CSIC, Inst Ciencia Mat Sevilla, Avda Americo Vespucio 149, Seville 41092, Spain
[2] Leibniz Inst New Mat, Campus D2 2, D-66123 Saarbrucken, Germany
关键词: Refractive index sensor;    Label free sensor;    Optofluidics;    GLAD;    Oblique angle deposited thin film;    Optical retarder transducer;   
DOI  :  10.1016/j.snb.2017.10.060
来源: Elsevier
PDF
【 摘 要 】

In this work we report the use of polarization active porous 1D Bragg microcavities (BM) prepared by physical vapor deposition at oblique angles for the optofluidic analysis of liquid solutions. These photonic structures consist of a series of stacked highly porous layers of two materials with different refractive indices and high birefringence. Their operational principle implies filling the pores with the analyzed liquid while monitoring with linearly polarized light the associated changes in optical response as a function of the solution refractive index. The response of both polarization active and inactive BMs as optofluidic sensors for the determination of glucose concentration in water solutions has been systematically compared. Different methods of detection, including monitoring the BM wave retarder behavior, are critically compared for both low and high glucose concentrations. Data are taken in transmission and reflection modes and different options explored to prove the incorporation of these nanostructured transducers into microfluidic systems and/or onto the tip of an optical fiber. This analysis has proven the advantages of the polarization active transducer sensors for the optofluidic analysis of liquids and their robustness even in the presence of light source instabilities or misalignments of the optical system used for detection. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_snb_2017_10_060.pdf 1860KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次