期刊论文详细信息
SENSORS AND ACTUATORS B-CHEMICAL 卷:277
Experimental and computational studies of the interactions between carbon nanotubes and ionic liquids used for detection of acetaminophen
Article
Salvador, Michele A.1  Sousa, Camila P.2  Maciel, Cleiton D.1,3  Gomes, Rayane N.2  Morais, Simone4  de Lima-Neto, Pedro2  Coutinho-Neto, Mauricio D.1  Correia, Adriana N.2  Homem-de-Mello, Paula1 
[1] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Ave Estados 5001,Bloco B,Sala 1017, BR-09210580 Santo Andre, SP, Brazil
[2] Univ Fed Ceara, Ctr Ciencias, Dept Quim Analit & Fis Quim, Bloco 940,Campus Pici, BR-60440900 Fortaleza, Ceara, Brazil
[3] Inst Fed Educ Ciencia & Tecnol Sao Paulo, Campus Itaquaquecetuba,Ave Primeiro Maio 500, BR-08571050 Itaquaquecetuba, SP, Brazil
[4] Inst Politecn Porto, Inst Super Engn Porto, Rua Dr Bernardino de Almeida 431, P-4200072 Porto, Portugal
关键词: Paracetamol;    1-Butyl-3-methylimidazolium hexafluorophosphate;    MWCNTs;    Density Functional Theory;    Molecular dynamics;    Monte Carlo;   
DOI  :  10.1016/j.snb.2018.09.017
来源: Elsevier
PDF
【 摘 要 】

The interactions between multi-walled carbon nanotubes and different amounts of an ionic liquid (IL), as well as the interactions between this system (used as electrochemical sensor) and acetaminophen (ACOP), were investigated through both experimental and theoretical methodologies. Experiments indicated that there is an optimal concentration of ionic liquid for ACOP detection. A host of techniques and model systems were employed to investigate the adsorption and oxidation processes. To investigate the source of the increased electrochemical current in the presence of an IL, we computed the adsorption energy values of ACOP in the nanotube - IL system via Monte Carlo simulations and Density Functional Theory (DFT). DFT allowed us to explore the changes in adsorption energy due to oxidation. Our theoretical results support the experimental findings that moderate amounts of IL modulates ACOP/ACOP(+) adsorption, pointing to a cooperative effect that tends to wane with increasing amounts of IL pairs. We observed that the IL favors desorption of the oxidized species and facilitates charge transfer from the ACOP to the nanotube. Therefore, our studies point towards multifactorial effects with clear physical basis that modulates binding leading to an optimal ratio to promote ACOP detection.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_snb_2018_09_017.pdf 968KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:2次