期刊论文详细信息
RENEWABLE & SUSTAINABLE ENERGY REVIEWS 卷:127
Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach
Article
Dhiman, Harsh S.1  Deb, Dipankar1  Foley, Aoife M.2 
[1] Inst Infrastruct Technol Res & Management, Dept Elect Engn, Ahmadabad 380026, Gujarat, India
[2] Queens Univ, Sch Mech & Aerosp Engn, Belfast BT9 5AH, Antrim, North Ireland
关键词: Feature selection;    Neighborhood component analysis;    Wind speed prediction;    Wake effect;    Gaussian model;   
DOI  :  10.1016/j.rser.2020.109873
来源: Elsevier
PDF
【 摘 要 】

Optimal placement of turbines in a wind farm is a major challenge where the wake effect reduces the effective wind power capture. Wind speed prediction is essential from a reliability point of view. In this article, a bilateral wake model which is derived from two benchmark models, namely, Jensen's and Frandsen's variation is used for studying the performance of far-end wakes. A prediction based approach is formulated wherein the inputs to the classical SVR model are based on the two benchmark models and the proposed bilateral Gaussian wake model. Wind speed is predicted for upstream turbines of two wind farm layouts (5-turbine and 15-turbine). Further, to observe the impact of input dimensionality, two techniques: (i) Grey relational analysis (GRA) and (ii) Neighborhood component analysis (NCA), are considered. Results reveal that for a wind site WBZ tower, NCA outperforms GRA by 36.48%, 34.0% and 7.03% for Jensen's, Frandsen's and bilateral wake model respectively. When compared to the two benchmark models for both the techniques (GRA and NCA), the prediction performance of bilateral wake model is superior. Overall, it is observed that the feature selection tools like GRA and NCA improve the wind speed prediction accuracy in the presence of wind wakes.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_rser_2020_109873.pdf 1864KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次