期刊论文详细信息
NEUROCOMPUTING 卷:151
A deterministic approach to regularized linear discriminant analysis
Article
Sharma, Alok1,2  Paliwal, Kuldip K.1 
[1] Griffith Univ, Sch Engn, Brisbane, Qld 4111, Australia
[2] Univ S Pacific, Sch Phys & Engn, Suva, Fiji
关键词: Linear discriminant analysis (LDA);    Regularized LDA;    Deterministic approach;    Cross-validation;    Classification;   
DOI  :  10.1016/j.neucom.2014.09.051
来源: Elsevier
PDF
【 摘 要 】

The regularized linear discriminant analysis (RLDA) technique is one of the popular methods for dimensionality reduction used for small sample size problems. In this technique, regularization parameter is conventionally computed using a cross-validation procedure. In this paper, we propose a deterministic way of computing the regularization parameter in RLDA for small sample size problem. The computational cost of the proposed deterministic RLDA is significantly less than the cross-validation based RLDA technique. The deterministic RLDA technique is also compared with other popular techniques on a number of datasets and favorable results are obtained. (C) 2014 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2014_09_051.pdf 742KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次