期刊论文详细信息
NEUROCOMPUTING 卷:175
Local and global regularized sparse coding for data representation
Article
Shu, Zhenqiu1  Zhou, Jun2  Huang, Pu3  Yu, Xun2  Yang, Zhangjing4  Zhao, Chunxia5 
[1] Jiangsu Univ Technol, Sch Comp Engn, Changzhou 213001, Peoples R China
[2] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
[3] Nanjing Univ Posts & Telecommun, Sch Comp Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China
[4] Nanjing Audit Univ, Sch Technol, Nanjing 211815, Jiangsu, Peoples R China
[5] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
关键词: Sparse coding;    Data representation;    Regularizer;    Regression;    Clustering;   
DOI  :  10.1016/j.neucom.2015.10.048
来源: Elsevier
PDF
【 摘 要 】

Recently, sparse coding has been widely adopted for data representation in real-world applications. In order to consider the geometric structure of data, we propose a novel method, local and global regularized sparse coding (LGSC), for data representation. LGSC not only models the global geometric structure by a global regression regularizer, but also takes into account the manifold structure using a local regression regularizer. Compared with traditional sparse coding methods, the proposed method can preserve both global and local geometric structures of the original high-dimensional data in a new representation space. Experimental results on benchmark datasets show that the proposed method can improve the performance of clustering. (C) 2015 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2015_10_048.pdf 1528KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次