期刊论文详细信息
NEUROCOMPUTING 卷:220
Blur robust optical flow using motion channel
Article
Li, Wenbin1,5  Chen, Yang2  Lee, JeeHang3  Ren, Gang4  Cosker, Darren5 
[1] UCL, Dept Comp Sci, London, England
[2] Imperial Coll London, Hamlyn Ctr, London, England
[3] Univ Bath, Dept Comp Sci, Bath, Avon, England
[4] Xiamen Univ Technol, Sch Digital Art, Xiamen, Peoples R China
[5] Univ Bath, CAMERA, Bath, Avon, England
关键词: Optical flow;    Computer vision;    Image deblurring;    Directional filtering;    RGB-motion imaging;   
DOI  :  10.1016/j.neucom.2016.03.105
来源: Elsevier
PDF
【 摘 要 】

It is hard to estimate optical flow given a realworld video sequence with camera shake and other motion blur. In this paper, we first investigate the blur parameterisation for video footage using near linear motion elements. We then combine a commercial 3D pose sensor with an RGB camera, in order to film video footage of interest together with the camera motion. We illustrate that this additional camera motion/trajectory channel can be embedded into a hybrid framework by interleaving an iterative blind deconvolution and warping based optical flow scheme. Our method yields improved accuracy within three other state-of-the-art baselines given our proposed ground truth blurry sequences; and several other realworld sequences filmed by our imaging system.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2016_03_105.pdf 4767KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次