期刊论文详细信息
NEUROCOMPUTING 卷:131
Efficient training for dendrite morphological neural networks
Article
Sossa, Humberto1  Guevara, Elizabeth1 
[1] CIC IPN, Mexico City 07738, DF, Mexico
关键词: Dendrite morphological neural network;    Efficient training;    Pattern recognition;    Classification;   
DOI  :  10.1016/j.neucom.2013.10.031
来源: Elsevier
PDF
【 摘 要 】

This paper introduces an efficient training algorithm for a dendrite morphological neural network (DMNN). Given p classes of patterns, C-k, k=1, 2, p, the algorithm selects the patterns of all the classes and opens a hyper-cube HCn (with n dimensions) with a size such that all the class elements remain inside HCn. The size of HCn can be chosen such that the border elements remain in some of the faces of HCn, or can be chosen for a bigger size. This last selection allows the trained DMNN to be a very efficient classification machine in the presence of noise at the moment of testing, as we will see later. In a second step, the algorithm divides the HCn into 2(n) smaller hyper-cubes and verifies if each hyper-cube encloses patterns for only one class. If this is the case, the learning process is stopped and the DMNN is designed. If at least one hyper-cube HCn encloses patterns of more than one class, then HCn is divided into 2(n) smaller hyper-cubes. The verification process is iteratively repeated onto each smaller hyper-cube until the stopping criterion is satisfied. At this moment the DMNN is designed. The algorithm was tested for benchmark problems and compare its performance against some reported algorithms, showing its superiority. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2013_10_031.pdf 5719KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次