期刊论文详细信息
| NEUROCOMPUTING | 卷:171 |
| Hardware implementation of a fault-tolerant Hopfield Neural Network on FPGAs | |
| Article | |
| Antonio Clemente, Juan1  Mansour, Wassim2  Ayoubi, Rafic3  Serrano, Felipe1  Mecha, Hortensia1  Ziade, Haissam4  El Falou, Wassim5  Velazco, Raoul2  | |
| [1] Univ Complutense Madrid, Comp Architecture Dept, E-28040 Madrid, Spain | |
| [2] INPG, TIMA Lab, Grenoble, France | |
| [3] Univ Balamand, Dept Comp Engn, Tripoli, Lebanon | |
| [4] Lebanese Univ, Fac Engn 1, Elect & Elect Dept, Tripoli, Lebanon | |
| [5] Lebanese Univ, Fac Engn 1, Tripoli, Lebanon | |
| 关键词: Artificial Neural Network (ANN); Hopfield Neural Network (HNN); Single Event Upset (SEU); Single Event Transient (SET); FPGA; Fault tolerance; | |
| DOI : 10.1016/j.neucom.2015.06.038 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
This letter presents an FPGA implementation of a fault-tolerant Hopfield Neural Network (HNN). The robustness of this circuit against Single Event Upsets (SEUs) and Single Event Transients (SETs) has been evaluated. Results show the fault tolerance of the proposed design, compared to a previous non-fault-tolerant implementation and a solution based on triple modular redundancy (TMR) of a standard HNN design. (C) 2015 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_neucom_2015_06_038.pdf | 1003KB |
PDF