期刊论文详细信息
NEUROCOMPUTING 卷:73
Exploratory analysis of functional data via clustering and optimal segmentation
Article
Hebrail, Georges1  Hugueney, Bernard2  Lechevallier, Yves3  Rossi, Fabrice1 
[1] Telecom ParisTech, BILab, CNRS, UMR 5141,LTCI, F-75013 Paris, France
[2] Univ Paris 09, LAMSADE, F-75016 Paris, France
[3] INRIA, Projet AxIS, F-78153 Le Chesnay, France
关键词: Functional data;    Multiple time series;    Exploratory analysis;    Clustering;    Segmentation;    Dynamic programming;   
DOI  :  10.1016/j.neucom.2009.11.022
来源: Elsevier
PDF
【 摘 要 】

We propose in this paper an exploratory analysis algorithm for functional data. The method partitions a set of functions into K clusters and represents each cluster by a simple prototype (e.g., piecewise constant). The total number of segments in the prototypes, P, is chosen by the user and optimally distributed among the clusters via two dynamic programming algorithms. The practical relevance of the method is shown on two real world datasets. (C) 2010 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2009_11_022.pdf 7516KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:3次