期刊论文详细信息
NEUROCOMPUTING 卷:184
Collective motion pattern inference via Locally Consistent Latent Dirichlet Allocation
Article
Zou, Jialing1  Ye, Qixiang1  Cui, Yanting1  Wan, Fang1  Fu, Kun2  Jiao, Jianbin1 
[1] Univ Chinese Acad Sci, Beijing 101408, Peoples R China
[2] Chinese Acad Sci, Inst Elect, Beijing 100864, Peoples R China
关键词: Collective motion;    Local motion pattern;    Topic model;    Trajectory clustering;   
DOI  :  10.1016/j.neucom.2015.08.108
来源: Elsevier
PDF
【 摘 要 】

Extracting motion descriptors in crowd videos is highly challenging due to scene clutter and serious occlusions. In this paper, Locally Consistent Latent Dirichlet Allocation (LC-LDA) model is proposed to learn collective motion patterns using tracklets and bag-of-words as low level features. The LC-LDA model implements a graph Laplacian operator to impose neighboring constraints to tracklets on a local manifold, which enforces the spatial-temporal coherence of tracklets in a high dimensional bag-of-word feature space. With initialization of clustering on a manifold, LC-LDA model improves the unsupervised inference capability and compactness of learned collective motion patterns. Experimental results on three public datasets indicate that LC-LDA based motion patterns can improve the trajectory clustering performance effectively. (C) 2015 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2015_08_108.pdf 14970KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次