期刊论文详细信息
NEUROCOMPUTING 卷:100
Articulated human body parts detection based on cluster background subtraction and foreground matching
Article
Bhaskar, Harish1  Mihaylova, Lyudmila2  Maskell, Simon3 
[1] Khalifa Univ, Dept Elect & Comp Engn, Abu Dhabi, U Arab Emirates
[2] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4YW, England
[3] Qinetiq, Malvern, Worcs, England
关键词: Human target tracking;    Background subtraction;    Optimisation;    Genetic algorithm;    Pictorial structures;   
DOI  :  10.1016/j.neucom.2011.12.039
来源: Elsevier
PDF
【 摘 要 】

Detecting people or other articulated objects and localising their body parts is a challenging computer vision problem as their movement is unpredictable under circumstances of partial and full occlusions. In this paper, a framework for human body parts tracking in video sequences using a self-adaptive cluster background subtraction (CBS) scheme is proposed based on a Gaussian mixture model (GMM) and foreground matching with rectangular pictorial structures. The efficiency of the designed human body parts tracking framework is illustrated over various real-world video sequences. (C) 2012 Elsevier By. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neucom_2011_12_039.pdf 2588KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次