期刊论文详细信息
REMOTE SENSING OF ENVIRONMENT 卷:187
Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications
Article
Zhang, Yongguang1,2,3  Guanter, Luis3  Berry, Joseph A.4  van der Tol, Christiaan5  Yang, Xi6  Tang, Jianwu7  Zhang, Fangmin8 
[1] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Int Inst Earth Syst Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
[3] GFZ German Res Ctr Geosci, Helmholtz Ctr Potsdam, Remote Sensing Sect, Telegrafenberg A17, D-14473 Potsdam, Germany
[4] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA
[5] Int Inst Geoinformat Sci & Earth Observat, POB 6, NL-7500 AA Enschede, Netherlands
[6] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA
[7] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
[8] Nanjing Univ Informat Sci & Technol, Coll Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China
关键词: Sun-induced chlorophyll fluorescence (SIF);    GPP;    SCOPE;    Photosynthesis;    Overpass time;    Red and far-red SIF;   
DOI  :  10.1016/j.rse.2016.10.016
来源: Elsevier
PDF
【 摘 要 】

Remote sensing of sun-induced chlorophyll fluorescence (SIF) is a novel optical tool for the assessment of terrestrial photosynthesis or gross primary production (GPP). Several recent studies have demonstrated the strong link between GPP and space-borne retrievals of SIF at broad scales. However, critical gaps remain between short-term small-scale mechanistic understanding and seasonal global observations. Here, we present a model-based analysis of the relationship between SIF and GPP across scales for diverse vegetation types and a range of meteorological conditions, with the ultimate focus on reproducing the environmental conditions during remote sensing measurements. The coupled fluorescence-photosynthesis model SCOPE is used to simulate GPP and SIF at the both leaf and canopy levels for 13 flux sites. Analyses were conducted to investigate the effects of temporal scaling, canopy structure, overpass time, and spectral domain on the relationship between SIF and GPP. The simulated SIF is highly non-linear with GPP at the leaf level and instantaneous time scale and tends to linearize when scaling to the canopy level and daily to seasonal. These relationships are consistent across a wide range of vegetation types. The relationship between SIF and GPP is primarily driven by absorbed photosynthetically active radiation (APAR), especially at the seasonal scale, although the photosynthetic efficiency also contributes to strengthen the link between them. The linearization of their relationship from leaf to canopy and averaging over time is because the overall conditions of the canopy fall within the range of the linear responses of GPP and SIF to light and the photosynthetic capacity. Our results further show that the top-of-canopy relationships between simulated SIF and GPP have similar linearity regardless of whether we used the morning or midday satellite overpass times. Field measurements confirmed these findings. In addition, the simulated red SIF at 685 nm has a similar relationship with GPP as that of far-red SIF at 740 nm at the canopy level. These findings provide model-based evidence to interpret remotely sensed SIF data and their relationship with GPP. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_rse_2016_10_016.pdf 3420KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次