期刊论文详细信息
REMOTE SENSING OF ENVIRONMENT 卷:258
High-resolution CubeSat imagery and machine learning for detailed snow-covered area
Article
Cannistra, Anthony F.1  Shean, David E.2  Cristea, Nicoleta C.2 
[1] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[2] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
关键词: Planet;    PlanetScope;    Machine learning;    Seasonal snow;    Snow covered area;    Airborne lidar;    Supervised classification;   
DOI  :  10.1016/j.rse.2021.112399
来源: Elsevier
PDF
【 摘 要 】

Snow cover affects a diverse array of physical, ecological, and societal systems. As such, the development of optical remote sensing techniques to measure snow-covered area (SCA) has enabled progress in a wide variety of research domains. However, in many cases, the spatial and temporal resolutions of currently available remotely sensed SCA products are insufficient to capture SCA evolution at spatial and temporal resolutions relevant to the study of fine-scale spatially heterogeneous phenomena. We developed a convolutional neural network-based method to identify snow covered area using the similar to 3 m, 4-band PlanetScope optical satellite image dataset with similar to daily, near-global coverage. By comparing our model performance to snow extent derived from high-resolution airborne lidar differential depth measurements and satellite platforms in two North American sites (Sierra Nevada, CA, USA and Rocky Mountains, CO, USA), we show that these emerging image archives have great potential to accurately observe snow-covered area at high spatial and temporal resolutions despite limited radiometric bandwidth and band placement. We achieve average snow classification F-Scores of 0.73 in our training basin and 0.67 in a climatically-distinct out-of-sample basin, suggesting opportunities for model transferability. We also evaluate the performance of these data in forested regions, suggesting avenues for further research. The unparalleled spatial and temporal coverage of CubeSat imagery offers an excellent opportunity for satellite remote sensing of snow, with real implications for ecological and water resource applications.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_rse_2021_112399.pdf 11756KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次