期刊论文详细信息
REMOTE SENSING OF ENVIRONMENT 卷:205
Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover
Article
Goldblatt, Ran1  Stuhlmacher, Michelle F.2  Tellman, Beth2  Clinton, Nicholas3  Hanson, Gordon1  Georgescu, Matei2  Wang, Chuyuan2  Serrano-Candela, Fidel4  Khandelwal, Amit K.5  Cheng, Wan-Hwa2  Balling, Robert C., Jr.2 
[1] Univ Calif San Diego, Sch Global Policy & Strategy, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Arizona State Univ, Sch Geog Sci & Urban Planning, 976 S Forest Mall, Tempe, AZ 85281 USA
[3] Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
[4] Univ Nacl Autonoma Mexico, Lab Nacl Ciencias Sostenibilidad, Apartado Postal 70-275 Ciudad Univ, Mexico City, DF, Mexico
[5] Columbia Univ, Columbia Business Sch, New York, NY 10027 USA
关键词: Urbanization;    Built-up land cover;    Nighttime light;    Image classification;    Google Earth Engine;   
DOI  :  10.1016/j.rse.2017.11.026
来源: Elsevier
PDF
【 摘 要 】

Reliable representations of global urban extent remain limited, hindering scientific progress across a range of disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data. Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth Engine, through the development of accurate 30 m resolution maps that characterize built-up land cover in three geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data fusion techniques for studying the built environment and is a first step towards the creation of an accurate global-scale map of urban land cover over time.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_rse_2017_11_026.pdf 6230KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次