期刊论文详细信息
POLYMER 卷:54
Combinatorial design of hydrolytically degradable, bone-like biocomposites based on PHEMA and hydroxyapatite
Article
Huang, Jijun1,2  Zhao, Dacheng3  Dangaria, Smit J.4,5  Luan, Xianghong4  Diekwisch, Thomas G. H.4,5  Jiang, Guoqing3  Saiz, Eduardo6  Liu, Gao3  Tomsia, Antoni P.1 
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
[4] Univ Illinois, Brodie Lab Craniofacial Genet, Chicago, IL 60612 USA
[5] Univ Illinois, Dept Bioengn, Chicago, IL 60612 USA
[6] Univ London Imperial Coll Sci Technol & Med, Ctr Adv Struct Ceram, Dept Mat, London SW7 2AZ, England
关键词: pHEMA;    Hydrolytic degradation;    Macromer;   
DOI  :  10.1016/j.polymer.2012.12.017
来源: Elsevier
PDF
【 摘 要 】

With advantages such as design flexibility in modifying degradation, surface chemistry, and topography, synthetic bone-graft substitutes are increasingly demanded in orthopedic tissue engineering to meet various requirements in the growing numbers of cases of skeletal impairment worldwide. Using a combinatorial approach, we developed a series of biocompatible, hydrolytically degradable, elastomeric, bone-like biocomposites, comprising 60 wt% poly(2-hydroxyethyl methacrylate-co-methacrylic acid), poly(HEMA-co-MA), and 40 wt% bioceramic hydroxyapatite (HA). Hydrolytic degradation of the biocomposites is rendered by a degradable macromer/crosslinker, dimethacrylated poly(lactide-b-ethylene glycol-b-lactide), which first degrades to break up 3-D hydrogel networks, followed by dissolution of linear pHEMA macromolecules and bioceramic particles. Swelling and degradation were examined at Hank's balanced salt solution at 37 degrees C in a 12-week period of time. The degradation is strongly modulated by altering the concentration of the co-monomer of methacrylic acid and of the macromer, and chain length/molecular weight of the macromer. 95% weight loss in mass is achieved after degradation for 12 weeks in a composition consisting of HEMA/MA/Macromer = 0/60/40, while 90% weight loss is seen after degradation only for 4 weeks in a composition composed of HEMA/MA/Macromer = 27/13/60 using a longer chain macromer. For compositions without a co-monomer, only about 14% is achieved in weight loss after 12-week degradation. These novel biomaterials offer numerous possibilities as drug delivery carriers and bone grafts particularly for low and medium load-bearing applications. (C) 2012 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_polymer_2012_12_017.pdf 1485KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次