期刊论文详细信息
NEUROPHARMACOLOGY 卷:63
Establishing a probabilistic reversal learning test in mice: Evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin
Article
Ineichen, Christian1  Sigrist, Hannes1  Spinelli, Simona1  Lesch, Klaus-Peter3  Sautter, Eva2  Pryce, Christopher R.1 
[1] Psychiat Univ Hosp Zurich, Preclin Lab Translat Res Affect Disorders, Clin Affect Disorders & Gen Psychiat, CH-8008 Zurich, Switzerland
[2] TSE Syst GmbH, Bad Homburg, Germany
[3] Univ Wurzburg, Dept Psychiat Psychosomat & Psychotherapy, Lab Translat Neurosci, Wurzburg, Germany
关键词: Mouse;    Probabilistic reversal learning;    Reward;    Punishment;    Expectancy/prediction;    Serotonin;    Escitalopram;    Depression;   
DOI  :  10.1016/j.neuropharm.2012.07.025
来源: Elsevier
PDF
【 摘 要 】

Valid animal models of psychopathology need to include behavioural readouts informed by human findings. In the probabilistic reversal learning (PRL) task, human subjects are confronted with serial reversal of the contingency between two operant stimuli and reward/punishment and, superimposed on this, a low probability (0.2) of punished correct responses/rewarded incorrect responses. In depression, reward-stay and reversals completed are unaffected but response-shift following punished correct response trials, referred to as negative feedback sensitivity (NFS), is increased. The aims of this study were to: establish an operant spatial PRL test appropriate for mice; obtain evidence for the processes mediating reward-stay and punishment-shift responding; and assess effects thereon of genetically- and pharmacologically-altered serotonin (5-HT) function. The study was conducted with wildtype (WT) and heterozygous mutant (HET) mice from a 5-HT transporter (5-HTF) null mutant strain. Mice were mildly food deprived and reward was sugar pellet and punishment was 5-s time out. Mice exhibited high motivation and adaptive reversal performance. Increased probability of punished correct response (PCR) trials per session (p = 0.1, 0.2 or 0.3) led to monotonic decrease in reward-stay and reversals completed, suggesting accurate reward prediction. NFS differed from chance-level at p PCR = 0.1, suggesting accurate punishment prediction, whereas NFS was at chance-level at p = 0.2-0.3. At p PCR = 0.1, HET mice exhibited lower NFS than WT mice. The 5-HTT blocker escitalopram was studied acutely at p PCR = 0.2: a low dose (0.5-1.5 mg/kg) resulted in decreased NFS, increased reward-stay and increased reversals completed, and similarly in WT and HET mice. This study demonstrates that testing PRL in mice can provide evidence on the regulation of reward and punishment processing that is, albeit within certain limits, of relevance to human emotional-cognitive processing, its dysfunction and treatment. (C) 2012 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neuropharm_2012_07_025.pdf 1262KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次