期刊论文详细信息
RENEWABLE ENERGY 卷:85
An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology
Article
Gaiser, Kyle1,3  Erickson, Paul1  Stroeve, Pieter2  Delplanque, Jean-Pierre1 
[1] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA
[3] Sandia Natl Labs, Livermore, CA USA
关键词: Pico-hydro;    Turgo turbine;    Hydroelectricity;    Optimization;    Central composite design;    Response surface methodology;   
DOI  :  10.1016/j.renene.2015.06.049
来源: Elsevier
PDF
【 摘 要 】

Millions of off-grid homes in remote areas around the world have access to pico-hydro (5 kW or less) resources that are undeveloped due to prohibitive installed costs ($/kW). The Turgo turbine, a hydroelectric impulse turbine generally suited for medium to high head applications, has gained renewed attention in research due to its potential applicability to such sites. Nevertheless, published literature about the Turgo turbine is limited and indicates that current theory and experimental knowledge do not adequately explain the effects of certain design parameters, such as nozzle diameter, jet inlet angle, number of blades, and blade speed on the turbine's efficiency. In this study, these parameters are used in a three-level (34) central composite response surface experiment. A low-cost Turgo turbine is built and tested from readily available materials and a second order regression model is developed to predict its efficiency as a function of each parameter above and their interactions. The effects of blade orientation angle and jet impact location on efficiency are also investigated and experimentally found to be of relatively little significance to the turbine. The purpose of this study is to establish empirical design guidelines that enable small hydroelectric manufacturers and individuals to design low-cost efficient Turgo Turbines that can be optimized to a specific pica-hydra site. The results are also expressed in dimensionless parameters to allow for potential scaling to larger systems and manufacturers. (C) 2015 Elsevier Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_renene_2015_06_049.pdf 3409KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:2次