期刊论文详细信息
RENEWABLE ENERGY 卷:149
Strongly-coupled aeroelastic free-vortex wake framework for floating offshore wind turbine rotors. Part 2: Application
Article
Rodriguez, Steven N.1  Jaworski, Justin W.1 
[1] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
关键词: Fluid-structure interaction;    Rotor-wake interactions;    Aeroelasticity;    Free-vortex wake method;    Floating offshore wind turbines;    NREL 5-MW reference wind turbine;   
DOI  :  10.1016/j.renene.2019.10.094
来源: Elsevier
PDF
【 摘 要 】

This two-part paper presents the integration of the free-vortex wake method (FVM) with an aeroelastic framework suitable to model the rotor-wake interactions engendered by floating offshore wind turbine (FOWT) rotors in operation. Part 1 of this paper introduces the numerical development and validation of an aeroelastic framework. Due to a lack of experimental aeroelastic benchmarks for FOWTs, a series of validation studies are conducted against the rotor aerodynamic and structural performance of the National Renewable Energy Laboratory (NREL) 5-MW reference wind turbine. Part 2 of this paper focuses on the modeling and simulating different aeroelastic operational conditions of FOWTs. Numerical results of the current framework capture consistently the aerodynamic rotor performance, such as power, thrust, and torque of wave-induced pitching FOWTs. In addition, the presented aeroelastic framework yields additional information about the power, thrust, and torque fluctuations due to the out-of-phase blade passing frequency and corresponding blade deflections. The fidelity of the presented framework demonstrates, for the first time, an FVM-based aeroelastic method capable of carrying out investigations on rotor-wake interactions and relevant aeroelastic phenomena of FOWTs. Published by Elsevier Ltd.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_renene_2019_10_094.pdf 7294KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:1次