| BIOORGANIC & MEDICINAL CHEMISTRY LETTERS | 卷:26 |
| Photoactivatable protein labeling by singlet oxygen mediated reactions | |
| Article | |
| To, Tsz-Leung1,2,3  Medzihradszky, Katalin F.1  Burlingame, Alma L.1  DeGrado, William F.1,2  Jo, Hyunil1,2  Shu, Xiaokun1,2  | |
| [1] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA | |
| [2] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA | |
| [3] Broad Inst, 415 Main St, Cambridge, MA 02142 USA | |
| 关键词: MiniSOG; Protein-protein interaction; Singlet oxygen; Biotinylation; Mass spectrometry; | |
| DOI : 10.1016/j.bmcl.2016.05.034 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Protein-protein interactions regulate many biological processes. Identification of interacting proteins is thus an important step toward molecular understanding of cell signaling. The aim of this study was to investigate the use of photo-generated singlet oxygen and a small molecule for proximity labeling of interacting proteins in cellular environment. The protein of interest (POI) was fused with a small singlet oxygen photosensitizer (miniSOG), which generates singlet oxygen (O-1(2)) upon irradiation. The locally generated singlet oxygen then activated a biotin-conjugated thiol molecule to form a covalent bond with the proteins nearby. The labeled proteins can then be separated and subsequently identified by mass spectrometry. To demonstrate the applicability of this labeling technology, we fused the miniSOG to Skp2, an F-box protein of the SCF ubiquitin ligase, and expressed the fusion protein in mammalian cells and identified that the surface cysteine of its interacting partner Skp1 was labeled by the biotin-thiol molecule. This photoactivatable protein labeling method may find important applications including identification of weak and transient protein-protein interactions in the native cellular context, as well as spatial and temporal control of protein labeling. (C) 2016 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_bmcl_2016_05_034.pdf | 1451KB |
PDF