期刊论文详细信息
NEUROSCIENCE LETTERS 卷:469
Manual rat sleep classification in principal component space
Article
Gilmour, Timothy P.1  Fang, Jidong1  Guan, Zhiwei1  Subramanian, Thyagarajan1 
[1] Penn State Univ, Coll Med, Hershey, PA USA
关键词: Rat;    Sleep scoring;    Principal component analysis;    Electroencephalogram;    Electromyogram;   
DOI  :  10.1016/j.neulet.2009.11.052
来源: Elsevier
PDF
【 摘 要 】

A simple method is described for using principal component analysis (PCA) to score rat sleep recordings as awake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep. PCA was used to reduce the dimensionality of the features extracted from each epoch to three, and the projections were then graphed in a scatterplot where the clusters were visually apparent. The clusters were then directly manually selected, classifying the entire recording at once. The method was tested in a set of ten 24-h rat sleep electroencephalogram (EEG) and electromyogram (EMG) recordings. Classifications by two human raters performing traditional epoch-by-epoch scoring were blindly compared with classifications by another two human raters using the new PCA method. Overall inter-rater median percent agreements ranged between 93.7% and 94.9%. Median Cohen's kappa coefficient ranged from 0.890 to 0.909. The PCA method on average required about 5 min for classification of each 24-h recording. The combination of good accuracy and reduced time compared to traditional sleep scoring suggests that the method may be useful for sleep research. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_neulet_2009_11_052.pdf 773KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:2次