JOURNAL OF THEORETICAL BIOLOGY | 卷:245 |
Biodiversity maintenance in food webs with regulatory environmental feedbacks | |
Article | |
Bagdassarian, Carey K. ; Dunham, Amy E. ; Brown, Christopher G. ; Rauscher, Daniel | |
关键词: environmental feedbacks; food webs; predator-prey dynamics; niche model; species persistence; | |
DOI : 10.1016/j.jtbi.2006.12.017 | |
来源: Elsevier | |
【 摘 要 】
Although the food web is one of the most fundamental and oldest concepts in ecology, elucidating the strategies and structures by which natural communities of species persist remains a challenge to empirical and theoretical ecologists. We show that simple regulatory feedbacks between autotrophs and their environment when embedded within complex and realistic food-web models enhance biodiversity. The food webs are generated through the niche-model algorithm and coupled with predator-prey dynamics, with and without environmental feedbacks at the autotroph level. With high probability and especially at lower, more realistic connectance levels, regulatory environmental feedbacks result in fewer species extinctions, that is, in increased species persistence. These same feedback couplings, however, also sensitize food webs to environmental stresses leading to abrupt collapses in biodiversity with increased forcing. Feedback interactions between species and their material environments anchor food-web persistence, adding another dimension to biodiversity conservation. We suggest that the regulatory features of two natural systems, deep-sea tubeworms with their microbial consortia and a soil ecosystem manifesting adaptive homeostatic changes, can be embedded within niche-model food-web dynamics. (c) 2007 Elsevier Ltd. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jtbi_2006_12_017.pdf | 227KB | download |