期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:130
Scaling limit of wetting models in 1+1 dimensions pinned to a shrinking strip
Article
Deuschel, Jean-Dominique1  Orenshtein, Tal1,2 
[1] Tech Univ Berlin, Str 17 Juni 135, D-10623 Berlin, Germany
[2] Humboldt Univ, Unter Linden 6, D-10117 Berlin, Germany
关键词: delta-pinning model;    Strip-wetting model;    Entropic repulsion;    Interface model;    Zero-set;    Markov renewal process;   
DOI  :  10.1016/j.spa.2019.08.001
来源: Elsevier
PDF
【 摘 要 】

We consider wetting models in 1+1 dimensions with a general pinning function on a shrinking strip. We show that under a diffusive scaling, the interface converges in law to the reflected Brownian motion, whenever the strip size is o(N-1/2) and the pinning function is close enough to the critical value of the so-called 6-pinning model of Deuschel-Giacomin-Zambotti [10]. As a corollary, the same result holds for the constant pinning strip wetting model at criticality with order o(N-1/2) shrinking strip. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2019_08_001.pdf 487KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次