期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:129
A bound on the Wasserstein-2 distance between linear combinations of independent random variables
Article
Arras, Benjamin1  Azmoodeh, Ehsan2  Poly, Guillaume3  Swan, Yvik4 
[1] Sorbonne Univ, Lab Jacques Louis Lions, Paris, France
[2] Ruhr Univ Bochum, Fac Math, Bochum, Germany
[3] Univ Rennes 1, Inst Rech Math Rennes, Rennes, France
[4] Univ Liege, Math Dept, Liege, Belgium
关键词: Second Wiener chaos;    Variance-gamma distribution;    Wasserstein-2 distance;    Malliavin Calculus;    Stein discrepancy;   
DOI  :  10.1016/j.spa.2018.07.009
来源: Elsevier
PDF
【 摘 要 】

We provide a bound on a distance between finitely supported elements and general elements of the unit sphere of l(2)(N*). We use this bound to estimate the Wasserstein-2 distance between random variables represented by linear combinations of independent random variables. Our results are expressed in terms of a discrepancy measure related to Nourdin-Peccati's Malliavin-Stein method. The main application is towards the computation of quantitative rates of convergence to elements of the second Wiener chaos. In particular, we explicit these rates for non-central asymptotic of sequences of quadratic forms and the behavior of the generalized Rosenblatt process at extreme critical exponent. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2018_07_009.pdf 739KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次