期刊论文详细信息
| STOCHASTIC PROCESSES AND THEIR APPLICATIONS | 卷:122 |
| On the Markov property of some Brownian martingales | |
| Article | |
| Fan, J. Y.1  Hamza, K.1  Klebaner, F. C.1  | |
| [1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia | |
| 关键词: Brownian martingales; Hermite polynomials; Markov property; Mimicking selfsimilar martingales; | |
| DOI : 10.1016/j.spa.2012.06.004 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
Let h(n) be the (probabilists') Hermite polynomial of degree n. Let H-n(z, a) = a(n/2)h(n)(z/root a) and H-n(z, 0) = z(n). It is well-known that H-n(B-t, t) is a martingale for every n. In this paper, we show that for n >= 3, H-n (B-t, t) is not Markovian. We then give a brief discussion on mimicking H-n(B-t, t) in the sense of constructing martingales whose marginal distributions match those of H-n(B-t, t). (C) 2012 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_spa_2012_06_004.pdf | 186KB |
PDF