期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:129
Mixing time of an unaligned Gibbs sampler on the square
Article
Gerencser, Balazs1,2 
[1] MTA Alfred Renyi Inst Math, Redltanoda Utca 13-15, H-1053 Budapest, Hungary
[2] Eotvos Lorand Univ, Dept Probabil Theory & Stat, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
关键词: Gibbs sampler;    Markov chain;    Mixing time;   
DOI  :  10.1016/j.spa.2018.10.004
来源: Elsevier
PDF
【 摘 要 】

The paper concerns a particular example of the Gibbs sampler and its mixing efficiency. Coordinates of a point are rerandomized in the unit square [0, 1](2) to approach a stationary distribution with density proportional to exp(-A(2)(u - v)(2)) for (u, v) is an element of [0, 1](2) with some large parameter A. Diaconis conjectured the mixing time of this process to be O(A(2)) which we confirm in this paper. This improves on the currently known O(exp(A(2))) estimate. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2018_10_004.pdf 422KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次